
www.manaraa.com

 

 

 

 

 

 

 

 

Development of Crash Prediction Models for Transportation Planning Analysis 

 

 

 

 

 

 

 

 

A Thesis 

Presented to the  

Graduate Faculty of the 

University of Louisiana at Lafayette 

In Partial Fulfillment of the 

Requirements of the Degree 

Master of Science 

 

 

 

 

 

 

 

 

Nicholas Broussard 

Fall 2015  



www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

  
All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest 10002446

Published by ProQuest LLC (2016).  Copyright of the Dissertation is held by the Author.

ProQuest Number:  10002446



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Nicholas Broussard 

2015 

All Rights Reserved  



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

Development of Crash Prediction Models for Transportation Planning Analysis 

Nicholas Broussard 

 

 

 

 

 

 

 

 

 

 

APPROVED: 

 

 

 

 

 

Xiaoduan Sun, Chair  Kenneth McManis 

Professor of Civil Engineering  Head and Professor of Civil Engineering 

 

 

 

   

Mohammad J. Khattak  Mary Farmer-Kaiser 

Professor of Civil Engineering  Dean of the Graduate School 

 



www.manaraa.com

 

 

Acknowledgments 

I would like to give the highest of thanks to my wife, Sheila Broussard, my parents, and my 

brother for being a constant source of encouragement, love, and guidance in my life. Without 

them, I wouldn’t have gotten as far as I have, driven myself to the heights I have reached, or 

made many of the decisions I have made. 

I would also like to thank my peers Chuck LeBoeuf, Rene Broussard, and Subasish Das, for 

the time they took out of their own busy lives to help me make this project go from daunting 

to attainable with their selfless help. 

Finally, I wish to thank Dr. Xiaoduan Sun for the immeasurable amount of knowledge that 

she has imparted to me over the course of the last decade. Her guidance and wisdom allowed 

me to continue on the path of becoming a Civil Engineer. 



www.manaraa.com

 

 

Table of Contents 

Acknowledgments iv 

List of Tables vii 

List of Figures viii 

Chapter 1: Introduction 1 

 1.1 Background 1 

 1.2 Objectives 4 

 

Chapter 2: Literature Review 5 

2.1 Mathematical Model Development 5 

2.1.1 Analysis of Current Models 5 

2.1.2 Alternative Model Development 7 

2.2 Machine Learning Approach- Vector Regression 10 

 

Chapter 3: Methodology 11 

 3.1 Crash Data  11 

  3.1.1 Crash Records 11 

3.1.2 Roadway Data 11 

 3.2 Data Processing 12 

 3.3 Model Development 16 

  3.3.1 Initial Variables  16 

  3.3.2 Exploratory Data Analysis 16 

  3.3.3 Variable Revisions   20 

  3.3.4 Final Variables   25 

 

Chapter 4: Results and Application 30 

 4.1 Model Parameters 30 

 4.2 Model Validation 30 

 4.3 Model Application 32 

  

Chapter 5: Conclusion 35 

References 37 

Appendix A: Sample Police Crash Report 38 

Appendix B: LADOTD Minimum Design Guides 48 

Appendix C: Sample Case Study of Model Application  63 

ABSTRACT 75



www.manaraa.com

vi 

 

Biographical Sketch          77



www.manaraa.com

 

 

List of Tables 

Table 2-1: Status of State/Local Crash Prediction Models 8 

Table 3-1: List of Initial LADOTD Variables for Modeling 13 

Table 4-1: Base Model Validation Statistics  32 

Table C-1: Comparison of EC and MTP Predicted Crashes 69 

Table C-2: Case Study Model Results  71 



www.manaraa.com

 

 

List of Figures 

Figure 3-1: Rural 2-Lane Model Variable Relationships EDA 17 

Figure 3-2: Rural Multilane Model Variable Relationships EDA 18 

Figure 3-3: Rural Interstate Model Variable Relationships EDA 18 

Figure 3-4: Urban 2-Lane Model Variable Relationships EDA 19 

Figure 3-5: Urban Multilane Model Variable Relationships EDA 19 

Figure 3-6: Urban Intersate Model Variable Relationships EDA 20 

Figure 3-7: Rural 2-Lane Model Variable Relationships EDA- Revised 22 

Figure 3-8: Rural Multilane Model Variable Relationships EDA- Revised 22 

Figure 3-9: Rural Interstate Model Variable Relationships EDA- Revised 23 

Figure 3-10: Urban 2-Lane Model Variable Relationships EDA- Revised 23 

Figure 3-11: Urban Multilane Model Variable Relationships EDA- Revised 24 

Figure 3-12: Urban Intersate Model Variable Relationships EDA- Revised 24 

Figure 3-13: Rural 2-Lane Model Trainset Results 26 

Figure 3-14: Rural Multi-Lane Model Trainset Results 26 

Figure 3-15: Rural Interstate Model Trainset Results 27 

Figure 3-16: Urban 2-Lane Model Trainset Results 27 

Figure 3-17: Urban Multi-Lane Model Trainset Results 28 

Figure 3-18: Urban Intersate Model Trainset Results 28 

Figure C-1: Lake Charles MTP 2040 Study Area 65 

Figure C-2: Case Study Corridors 65 

Figure C-3: Corridors by Test Project Type 66 

Figure C-4: Sample Segment Data 68



www.manaraa.com

 

ix 

 

Figure C-5: Crash Frequency Changes of Tested Segments 72 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

 

Chapter 1: Introduction 

1.1 Background 

Transportation planning is the act of evaluating the existing transportation system of an area, 

projecting its future growth, analyzing its current and future deficiencies, and selecting 

transportation projects with consideration of expected available funding to best suit the future 

needs of the area. The Transportation Bill, Moving Ahead for Progress in the 21st Century 

(MAP-21), provides the funding for roadway projects across the country and also provides 

the basic guidance for what a Metropolitan Transportation Plan (MTP) should encompass. 

Most transportation planning efforts are used for either the development of the MTP or the 

analysis of an upcoming project within an area for the purposes of Stage 0 analysis. 

 

MAP-21 continued the requirements of the previous transportation bill; Safe, Accountable, 

Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). One of 

the most important features of the bill became known as the “eight SAFETEA-LU factors,” 

which have been carried into MAP-21. One of these factors states that the transportation 

planning must increase the transportation system’s safety for all users. This means that any 

transportation improvement plan must make an effort to improve the safety of the area or 

have a minimal impact upon it. This particular factor is difficult to analyze in planning 

analysis because quantitative analysis is not readily available and the term “safety” can be 

relative to a particular area and even to individuals. 

 

The most common way that safety has been interpreted for the purposes of transportation 

planning also goes hand-in-hand with an engineering perspective. This is due to the fact that
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safety is often thought of in terms of random and unintentional acts on our transportation 

system, which to many people means traffic crashes. Using traffic crashes as the definition of 

safety means that the most measureable metric available for quantitative analysis is the 

average crash frequency and the crash rate upon a particular roadway or intersections. In 

order to meet the safety requirement for MAP-21, transportation projects should produce no 

additional crashes and reduce them where possible. 

 

The analysis of the base year conditions for safety can easily be done with the use of 

geographic information systems (GIS) by developing crash records with latitude and 

longitude data, importing the records to create a point layer, and begin spatial analysis with 

those points and a known roadway network. Using this information, crash frequencies and 

crash rates for roadway segments and intersections can be developed. Though segment and 

intersection analyses can be performed, the safety benefit for the entire project’s length 

(encompassing both segments and intersections) is used to judge its effectiveness in meeting 

the safety requirement of MAP-21.  

 

For transportation planning, the safety benefit for the future transportation network is 

currently often determined by engineering judgment, or that of an experienced transportation 

planner, due to the relative lack of quantitative analysis available for crashes. One of the few 

quantitative means available is that of the models developed from the Highway Safety 

Manual (HSM). However there are several issues that make this means of analysis largely 

inconvenient and incompatible with transportation planning.  
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The HSM models require a lot of input information in order to be used properly. Often, the 

input required is not normally used at the planning level and is not readily obtainable. The 

planning level information that is collected and can be used in crash analysis are: 

 Segment length 

 Average daily traffic 

 Number of lanes 

 Roadway configuration (divided, undivided, center turn lane, etc.)   

 Posted speed 

The HSM models additionally require the following data (dependent upon the type of model 

used): 

 Lane width 

 Shoulder width 

 Shoulder type 

 Median width 

 Side slopes 

 Lighting 

 Auto speed enforcement 

 On-street parking 

 Proportion of curb length and on-street parking 

 Amounts of driveways by various land use types 

 Fixed object along roadside density 

 Offset of fixed objects along roadside 
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Furthermore, when the data mentioned above can be found to perform analysis using the 

HSM methods, it is very time-consuming and either cannot be done within the time frame 

available to complete a transportation planning project (usually one year from start to finish), 

or would cost too many hours and money for the project to be completed within budget.  

 

The HSM methodology is also known to need calibration factors developed at the local level. 

This calibration factor takes a lot of time to develop, and must be developed for each type of 

model that the HSM offers, usually in conjunction with the state Department of 

Transportation. These issues lead many to believe that the use of the HSM methodology in 

transportation planning to be an inadequate approach and considered “too umbrella” to be 

used properly. 

1.2 Objectives 

As previously mentioned, the HSM methodology is considered to be largely incompatible 

with transportation planning efforts due to time constraints and data availability. While the 

use of engineering judgment or those of experienced planners can be used for the safety 

element of a planning project, there is an increased need for quantitative analysis due to the 

need to show progress through performance measures as per MAP-21 requirements. To that 

end, the objective of this project is to establish a crash prediction model for both urban and 

rural roadway segments with data that is readily available from the state Department of 

Transportation, local government with jurisdiction of the transportation project(s), or another 

reliable source in order to determine the impact of a transportation project upon the safety of 

the roadway network. 



www.manaraa.com

 

 

 

Chapter 2: Literature Review 

There are three ways that model development can be approached for developing a crash 

prediction model: the HSM, mathematical model development, and machine learning 

algorithms. The use of the mathematical model is a more traditional method that provides the 

end user with an equation to calculate the desired results (crash prediction, in this case). The 

drawback of the mathematical models is that they can only run at an aggregated level when 

developing the equation and will lack the accuracy needed to operate at a small level, 

meaning that some interpretation of the results may be necessary. Modeling that uses 

machine learning algorithms “learns” from the available data and determines how to perform 

the given task(s) by generalizing from example and mimicking the expected results (1). 

There are several machine learning algorithms types, which include clustering, support 

vector machines (SVR), fuzzy algorithms, and kriging methods. The drawback to using the 

machine learning algorithms is that they do not provide an equation, but rather a “black box” 

that does not provide the end user an equation that can show how the result was obtained. 

2.1 Mathematical Model Development 

2.1.1 Analysis of Current Models  

The first model that was made available to engineers and planners for the purposes of crash 

analysis was the Highway Safety Manual (2). The book, created by the American Association 

of State Highway and Transportation Officials (AASHTO), discusses crash safety and 

analysis in detail based on 30 years of previously conducted research on safety modeling 

from all over the United States. Additionally, the HSM provides an explanation of the 

common factors in traffic crashes, develops crash modification factors based on the roadway 
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conditions, and provides a methodology to calculate crashes based on the given conditions. 

The models themselves are provided to the public for free in Microsoft Excel format by 

AASHTO (3) in order to assist in efforts to conduct safety analysis for roadway projects.  

 

As previously discussed, the data contained in the HSM models is considered a very broad 

approach and the need to develop calibration factors as well as the large amount of data 

collection means that other modeling means would need to be used for transportation 

planning. In addition, the HSM models do not have the capacity to do crash analysis for 

anything greater than a four-lane roadway with a center turn lane, or two-way left turn lane 

(TWLTL), limiting the usefulness of the model in urban areas that wish for a project to 

widen a roadway to six lanes or beyond. The HSM also does not have a fully developed 

interstate model, though the draft has been published. 

 

The next model that was made available is the Interactive Highway Safety Design Model 

(IHSDM). ”The IHSDM is a suite of software analysis tools used to evaluate the safety and 

operational effects of geometric design decisions on highways” (4). It is intended as a 

support tool for decision-making and estimates expected safety of roadway conditions and 

designs. The suite was created with the expectation of being used by highway project 

managers, designers, and traffic and safety reviewers in state and local highway agencies, as 

well as engineering consultants and firms. 

The IHSDM was developed using the HSM and SafetyAnalyst, which is now available as 

AASHTOWare, and is free for anyone to use. The IHSDM is administered by the Federal 

Highway Administration. Due to the fact that the IHSDM makes use of the HSM, the Crash 
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Prediction Module uses the HSM models for evaluating rural 2-lane highways, rural 

multilane highways, and urban/suburban arterials, as well as the draft interstate model. This 

unfortunately means that it cannot be used for planning-level analysis because it is 

effectively the HSM with additional software features. 

Several states and cities have made the attempt to develop crash prediction models using the 

HSM and develop the necessary calibration factors for their state or local areas. Others have 

developed their own crash prediction models (safety performance functions) with their own 

available data. Table 2-1 shows the status of the current efforts for these models as of July 

2014. 
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Table 2-1: Status of State/Local Crash Prediction Models 

Location Model Status Type 

Alabama Completed HSM Calibration 

Florida Completed HSM Calibration 

Illinois Completed Safety Performance Function 

Kansas Completed HSM Calibration 

Maryland Completed HSM Calibration 

North Carolina Completed Safety Performance Function 

Oregon Completed HSM Calibration 

Utah Completed HSM Calibration 

Virginia Completed SafetyAnalyst 

Missouri Completed HSM Calibration 

Arizona Ongoing Unknown 

Michigan Ongoing Unknown 

Ohio Ongoing Unknown 

Idaho Ongoing HSM Calibration 

Louisiana Ongoing HSM Calibration 

Oklahoma Ongoing Unknown 

Washington Ongoing Unknown 

Pennsylvania, PA Ongoing Unknown 

Source: The National Academies of Sciences, Engineering, and Medicine; Transportation Research Board 

2.1.2 Alternative Model Development 

While some states now have their own safety performance functions or HSM calibration 

factors, many more either have not begun to develop them, or have begun to look at their 

own alternatives. The use of these alternatives was the starting point for the development of 

this project’s methodology as they are better aligned with the data and methodologies of 

transportation planning. However, they will only be covered in brief detail as none of these 

methodologies were used in the final product. 

 

Efforts in Oregon showed that mathematical modeling for a state was possible, even with 

planning level analysis data, by Dixon and Avelar (5). Their research showed that the models 
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could be analyzed by collecting data on annual average daily traffic (AADT), driveway 

location, driveway width, driveway type, number of lanes, median configuration, posted 

speed, and traffic control. Of these variables, all but the driveway data and traffic control are 

commonly used in transportation planning models. Further analysis of the Dixon and Avelar 

models reinforced that such modeling could be used for transportation planning purposes but 

would have to be heavily modified beyond an acceptable level because of the need to remove 

the driveway data due to time constraints, which itself echoes one of the HSM issues. 

 

The work that was done by Bonneson, Zimmerman, and Fitzpatrick (6) for the Texas 

Department of Transportation also yielded results that could be applied to the transportation 

planning level. Furthermore, their research provided the opportunity to choose between 

several types of equations for mathematical modeling analysis. This project was started 

because the Department of Transportation was looking to incorporate quantitative safety 

analysis into the design process at an earlier stage than is usually done. The project objective 

was to develop safety guidelines and evaluation tools and implement them in the project 

design process. The results of the project were used to develop the guidelines presented in the 

Interim Roadway Safety Design Workbook. 

 

Their work only looks at the design factors and their relationship to safety. In a way, this is 

somewhat the same approach that is used in the HSM. However, their methodology does not 

use the HSM and actually uses models from several different sources. The models developed 

in their report were capable of handling several different land types as well as more than 4 

lanes and were considered to be a good starting point for planning level analysis. After 
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analyzing the methodologies used in their report, a modification of the Hadi models that they 

used was selected for the starting point of the model being developed in this thesis.  

 

Unfortunately, while the modeling process was successful in obtaining results and producing 

an equation, these results were considered to have too much variation within the dataset and 

produced results that were deemed in excess of a reasonable deviation in the data. This led to 

the decision to use a vector analysis methodology for model development. 

2.2 Machine Learning Approach- Vector Regression 

A study by M. Castero-Neto, Y. Jeong, M. Jeong, and L. Han (7) used support vector 

regression for the purposes of predicting AADT for the state of Tennessee. Their research 

evaluated the performance of a modified version of the support vector machine for regression 

(SVR) in order to forecast AADT for one year without the use of any external variables. The 

SVR methodology is becoming more commonly used due to its general performance and 

lack of local minima. The SVR models, and their results, are highly dependent upon on the 

settings of the type of kernel used, the value of C, and the value of ε for the ε-insensitive loss 

function. This information was used to guide the work of LeBouef and Sun (8) as they 

developed a model using the SVR methodology in order to estimate the AADT on roadways 

in Louisiana that are not maintained by the Louisiana Department of Transportation and 

Development (LADOTD). It is believed that through their work using the SVR modeling 

approach that was developed by LeBouef and Sun, but tailored to planning level data that can 

be used for crash analysis, a reasonable crash prediction model can be developed for any 

state, urbanized area, or municipality.



www.manaraa.com

 

 

 

Chapter 3: Methodology 

This chapter introduces the safety modeling techniques starting with the discussion on the 

data.  

3.1 Crash Data 

3.1.1 Crash Records 

The development of any crash prediction model must begin with the actual crash records that 

are recorded by the various agencies dealing with these events: the local law enforcement 

forces that respond to the crashes. Like every state in the U.S., Louisiana has a standardized 

crash record form that is used to gather data on traffic crashes, including the information on 

driver, vehicle, and crash characteristics as shown in Appendix A. These crash records are 

provided to the LADOTD for the purposes of safety analysis in order to conduct traffic safety 

studies or for the identification of locations that are in need of improvement. All crashes that 

are handled by the Louisiana State Police are provided to the LADOTD while local 

governments are encouraged to provide their local crash data to the LADOTD and often do. 

 

The development of this model uses three years of crash data (from 2011-2013) in order to 

use the most-up to-date data that is readily available from the LADOTD. The use of three 

years of data also allows for the establishment of more recent traffic trends while avoiding a 

regression to the mean (a statistical event that makes natural variation between samples look 

like real change) bias. The data received from the LADOTD contains data on crash number, 

highway number, AADT, control section, functional classification, highway classification, 

logmiles, latitude and longitude, milepost, and more. This allows for a large set of data and
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potential variables, though only a few are necessary. The data used for the development of 

the model is detailed in Section 3.2. 

3.1.2 Roadway Data 

To link a roadway safety performance to its attributes (geometric features and traffic 

condition), roadway data must also be obtained for the research. Thus, in addition to the 

crash records themselves, a state-maintained roadways database by the LADOTD was also 

used. This data presented by a GIS layer was created in 2012 from the GIS division at the 

LADOTD headquarters, which provides a comprehensive data set on the roadways, including 

many of the attributes in the crash records. Additionally, the layer can be used to cross-check 

roadway attributes that are listed in the crash records or even provide supplemental data for 

model development.  

3.2 Data Processing 

To model roadway segment safety performance, all individual crash data must be populated 

to each segment. This means that the individual crash records need to be aggregated to the 

segment level. The task was accomplished using several programs.  

 

The crash data provided by the LADOTD has all of the crashes in a given year compiled into 

one file. However, the record is known to change from year to year with column names 

changing and the addition or removal of other columns also being common. In order to 

address this, the known desired variables from engineering and planning experience were 

selected after the files were properly converted. Using the Microsoft Office software suite, 

the data files were converted into a usable format (Microsoft Excel) and each individual 
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record had a “FLAG” field placed at the end to assist with combining the records and 

calculating their pertinent data.  

 

To avoid exceeding the Microsoft Access file limitation and improve the speed of the data 

processing, the original dataset was first cleaned up by eliminating unnecessary columns. 

Additionally, the three LADOTD files that were received by year were combined into one 

file in order to obtain a comprehensive set that accounts for all of the crashes under given 

roadway conditions. After combining the year data into one set and eliminating the 

unnecessary columns, a spreadsheet containing the data in Table 3-1 remained. 

 

Table 3-1: List of Initial LADOTD Variables for Modeling 

Column Name Description 

CONTROL_SECTION 
LADOTD Control Section number where the crash 

occurred at 

LOGMILE_FROM LADOTD Logmile where the segment begins at 

LOGMILE_TO LADOTD Logmile where the segment end at 

LENGTH Length of the segment 

ADT Average daily traffic on the segment 

FUNCTIONAL_CLASS Highway function classification of the segment 

HIGHWAY_CLASS 
Description of the type of highway the segment is 

located on 

MEDIAN_WIDTH Width of the median, if any, on the segment 

NUM_LANES Number of lanes in both directions of the segment 

PAVEMENT_WIDTH Total pavement width of the segment 

INTERSECTION 
A marker by LADOTD the shows if a crash was 

intersection related or not. 
Source: LADOTD, 2015 
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The spreadsheet containing this data, along with a FLAG field in which all values were equal 

to one (1) was imported into Microsoft Access. There were over 450,000 crash records 

imported for the model analysis. Using a query code, the crash data was aggregated to the 

segment level based on crashes that had the same:  

 Control section 

 Logmile points 

 Length 

 Functional classification 

 Highway class 

 Median width 

 Number of lanes 

 Pavement width 

 Intersection involvement 

The average ADT over three years was used. Without averaging this value each segment 

would have multiple records, with one for each ADT, and negating the reason for using 

multiple years of data. This process provides data for a segment with specific conditions and 

an average ADT. The total crashes are a summation of the FLAG field, since each crash 

record had FLAG=1. 

 

The result of the data aggregation provides over 15,400 segments for analysis purposes. 

However, these data segments contain data on the local crashes (identified by a lack of 

control section and logmile data as those features are unique to LADOTD roadways) and 
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intersection crashes, which are not necessary to this study. Planning level safety analysis for 

an MTP focuses only on the roadway network that is used in the travel demand model and 

that vast bulk of these models use the functionally classified roadways, using local roads only 

for connectivity purposes in the model. This meant that the segment crash records for the 

non-functionally-classified local roadways needed to be removed. Additionally, because this 

study focuses on developing a functionally-classified segment crash prediction model, any 

records that had INTERSECTION=1 were also removed (nearly 6,500 records). 

 

In order to avoid the unintentional removal of any functionally classified roadways, segments 

that had missing control section or logmile data were analyzed using the TransCAD software 

and the provided LADOTD GIS layer. Using the developed data and the joining feature from 

the TransCAD software, reasonable queries were created to find matching data between the 

control sections or logmiles. The missing data was then copied from the LADOTD GIS layer 

to complete the data where possible. Those records that could not be completed (23 

segments) were removed to avoid erroneous data.  

 

During the process of correcting the missing logmile and/or control section data, 

supplemental data from the GIS layer was brought in. This data was used to correct missing 

highway class data as well as determine what each highway class code meant. Furthermore, 

additional data for the median widths and median types were added to the segment data 

where possible. Finally, where necessary, the median width data originally obtained from the 

crash records was adjusted using judgment based on experience with roadway classes and the 

supplemental DOTD median data. This was done to create reasonable numbers for values 
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that were incorrect based on roadway or median type (e.x., a rural 2-lane highway wouldn’t 

have a median width of 299 feet and is almost always an undivided highway with 0 median 

width). 

3.3 Model Development 

3.3.1 Initial Variables 

Following the aggregation of the data and the adjustments for missing or incomplete data, an 

initial selection of variables was chosen for modeling. The variables chosen were: 

 Length 

 Average ADT 

 Median Width 

 Number of Lanes 

 Pavement Width 

 Average Crashes Per Year (a.k.a. Crash Frequency) 

3.3.2 Exploratory Data Analysis 

Following the selection of the initial model variables the vector regression model was used in 

a “trainset” mode to allow the model to learn the patterns within the data. Trainset is where 

the model effectively develops the crash prediction model to be used in application based 

upon the trends in the data sets provided. In addition to analyzing the results of the model 

performance and its relationship between the observed values and actual values, an 

exploratory data analysis (EDA) is needed to determine if the variables being used are 

appropriate for the model and show the relationships between the chosen values.  
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For modeling purposes, the chosen independent variables should have a strong and positive 

relationship with the dependent variable (the crash frequency) where possible, while having 

little to no relationship with the other independent variables. If the model uses independent 

variables that have a relationship with one another the results provided will be influenced and 

skewed towards the variables with the relationship due to a type of redundancy within the 

data. Figure 3-1 through Figure 3-6 display the matrices provided by the model for the EDA 

to analyze the relationships between variables. A larger circle with a deeper color represents 

a stronger relationship between the variables and the color denotes whether the relationship is 

positive (blue) or negative (red). Note that the rural and urban 2-lane models do not use the 

number of lanes as a variable since the value is constant in those two models. 

 

Figure 3-1: Rural 2-Lane Model Variable Relationships EDA 
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Figure 3-2: Rural Multi-Lane Model Variable Relationships EDA 

 

Figure 3-3: Rural Interstate Model Variable Relationships EDA  
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Figure 3-4: Urban 2-Lane Model Variable Relationships EDA  

 

Figure 3-5: Urban Multi-Lane Model Variable Relationships EDA  
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Figure 3-6: Urban Interstate Model Variable Relationships EDA 

 

3.3.3 Variable Revisions 

Analysis of the EDA results and knowledge of crash factors revealed that the usage of 

pavement width in the model is inappropriate for modeling purposes. The ADT of a roadway 

is influenced by several factors which include the number of lanes and the pavement width, 

both of which are displayed in the EDA. Even though the number of lanes has a relationship 

to the ADT, the variable is still important to this model as the number of lanes also 

introduces weaving and other driver behaviors that affect crashes. However, the total 

pavement width is a result of the number of lanes and as pavement width and the number of 

lanes increases so does the ADT. This requires the removal of the pavement width as a model 

variable based on the requirements mentioned in Section 3.3.2. It is known, however, that the 

average lane width can have an impact upon crash frequencies and is independent of the 
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ADT. The pavement width data was used to derive the average lane width data for the next 

model run. 

 

In addition to the changes based on the pavement width, the median width data also needed 

to be changed in the model runs. The median width has a positive relationship to the crash 

frequency but the strength of the variable in the 2-lane and multi-lane models did not have 

the desired effect. The use of median width in the interstate models is necessary since all 

interstates are required by design standards to be divided in some manner and the median 

width has the proper strength of relationship. In order to model the impact of the median, 

which is known to be a factor in crash safety, upon the 2-lane and multi-lane highways while 

removing the issue of the widths having a weak relationship, the 2-lane and multi-lane 

models were tested with a variable that indicates whether the segment has a median presence 

(MED_PRESENCE) or not. A second EDA was performed after the variable revisions and 

the results are shown in Figures 3-7 through 3-12. 
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Figure 3-7: Rural 2-Lane Model Variable Relationships EDA- Revised 

 

Figure 3-8: Rural Multi-Lane Model Variable Relationships EDA- Revised 
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Figure 3-9: Rural Interstate Model Variable Relationships EDA- Revised 

 

Figure 3-10: Urban 2-Lane Model Variable Relationships EDA- Revised 
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Figure 3-11: Urban Multi-Lane Model Variable Relationships EDA- Revised 

 

Figure 3-12: Urban Interstate Model Variable Relationships EDA- Revised 
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3.3.4 Final Variables 

The revised variables provide the desired results for the variable relationships so that 

independent variables used to calculate the crash frequencies are not dependent upon one 

another. Of note is the relationship of the ADT to the average lane width in the 2-lane 

models. Like the ADT to number of lanes relationship, the average lane width is important 

on two lane roads due to its impact upon driver behavior and is still necessary despite the 

relationship. Wider roadways often attract more drivers due to the comfort of more 

“forgiving” roadways for when they make errors or need to move across the pavement to 

avoid roadway debris, animals, etc. These greater widths therefore affect the safety of the 

roadway and reduce crashes due to their more forgiving nature. 

 

Following the second EDA, the model was again run in the trainset mode for the model to 

learn the patterns of the chosen variables and the crash frequency. The results of the trainset 

reveal whether the model is producing sufficiently acceptable results to move on to model 

validation and then into crash prediction for future years. Figures 3-13 through 3-18 show a 

plot of the trainset’s predicted versus observed values.  
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Figure 3-13: Rural 2-Lane Model Trainset Results 

 

Figure 3-14: Rural Multi-Lane Model Trainset Results 
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Figure 3-15: Rural Interstate Model Trainset Results 

 

Figure 3-16: Urban 2-Lane Model Trainset Results 
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Figure 3-17: Urban Multi-Lane Model Trainset Results 

 

 

Figure 3-18: Urban Interstate Model Trainset Results 

 

 

The model results show that the SVR models are capable of predicting the crashes close to 

the observed values and have an acceptable amount of variation. Additionally, the models are 

not predicting values in a manner that is either consistently higher or consistently lower than 

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

P
re

d
ic

te
d

C
ra

sh
es

Observed Crashes

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

P
re

d
ic

te
d

 C
ra

sh
es

Observed Crashes



www.manaraa.com

 

29 

 

the observed crashes. Based upon the EDA for these new variables and the results shown in 

the plots of Figures 3-13 through 3-18, the new variables are acceptable to proceed with 

model validation and application.  

 

The final variables for the crash prediction models are: 

2-lane and multi-lane models: 

  

 LENGTH 

 AVG_ADT 

 MED_PRESENCE 

 NUM_LANES (Multi-lane only) 

 AVG_LANE_WIDTH 

 AVG_CRASH 

  

Interstate models: 

  

 LENGTH 

 AVG_ADT 

 MEDIAN_WIDTH 

 NUM_LANES 

 AVG_LANE_WIDTH 

 AVG_CRASH 
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Chapter 4: Results and Application 

4.1 Model Parameters 

The chosen SVR models used in this study are dependent upon the kernel type, value of the 

penalty for excess deviation during training (C, Gamma), and error-term value (ε, Epsilon) 

for the ε-insensitive loss function. (7, 8) The number of support vectors to be used in 

modeling is determined before running the SVR analysis. The models used in this thesis are 

run using an open-source software programming language, R, to predict the average yearly 

crash frequency. The model parameters are as follows: 

 SVM-Type, eps-regression 

 SVM-Kernel, radial  

 Cost, a value of 100 in the study 

 Gamma, a value of 1 

 Epsilon, a value of 0.1 

However, the initial estimated values are not shown in the script window in R and the results 

need further analysis (both visual and mathematical) to be validated.  

4.2 Model Validation  

Validating results from the models is of paramount importance. Model validation is defined 

as the process of determining the degree to which a model is an accurate representation of the 

real world results. It is accomplished through the comparison of predictions from a model to 

the observed data. For this purpose, 25 percent of the data being tested are purposely 

reserved as testset for the model validation while 75 percent of the data, called trainset, were 

used in model development. 
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Validation of the crash predictions models is done at the individual model level using the 

testset data feature of the model. The use of the trainset feature is for the model to learn the 

trends and patterns that exist in the current data. The use of the testset feature allows the 

model to forecast crash frequencies using a given set of conditions based on the knowledge 

the model obtained from the trainset. Testset is the actual application of the crash prediction 

model developed during the trainset phase in order to predict the crash frequency of a 

roadway segment based on the given attributes.  

 

It is important to note that the trainset values are often considerably better than the testset 

values. The trainset is specifically intended to match the trends and represents the best fit 

possible for the model. Because the testset is an application, it results in estimates that are 

considerably less accurate but still capable of being used for the intended purposes. 

Transportation planning as a field is built upon the knowledge that results obtained from the 

models used in the process are estimates based on the available knowledge and trends. This 

means that the testset application of the model is still in line with the methodologies used in 

transportation planning. 

 

In order to validate the model, an analysis of the 𝑅2 of the data plots (observed vs predicted), 

and RMSE was conducted. The use of RMSE was chosen due to the fact that a raw aggregate 

sum and percent deviation comparison can be misleading. This is due to the fact that the total 

sums of the observed and predicted crashes can be very close, but individual segments can 

have a high amount of variation between them, resulting in what appears to be a good overall 

model performance but a weak performance at the segment level. The RMSE is a 
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representation of the standard deviation of the differences between the observed field values 

and predicted values within the model sample.  

Table 4-1 displays the model validation statistics. Based upon the values shown in Table 4-1, 

the testset values show that the model performs at an acceptable level. For those models in 

which the 𝑅2 is not particularly favorable the RMSE values show that the particular model 

still produces acceptable results as these roadways often experience high crash frequencies. 

Table 4-1: Base Model Validation Statistics 

  Trainset Testset 

  R-Squared RMSE R-Squared RMSE 

Rural 2-Lane 0.59 2.29 0.515 2.63 

Rural Multi-Lane 0.83 1.97 0.498 3.59 

Rural Interstate 0.85 6.53 0.167 20.05 

Urban 2-Lane 0.66  -- 0.445 8.63 

Urban Multi-Lane 0.86  -- 0.157 19,70 

Urban Interstate 0.67 18.2 0.159 43.86 

 

4.3 Model Application 

The application of the model for the use of crash prediction comes from the testset feature 

built into the model’s code. This allows for the transportation planning aspect of these 

models to be used as the forecast data input from the travel demand models used in the MTP 

process feeds directly into the SVR models, allowing for the crash frequencies of future years 

to be predicted. 

 

The steps involved in the model application are as follows: 

1.) The data for the roadways, using the variables described in Chapter 3, is collected for 

each segment in the roadway network under analysis. 
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2.) Data from the statewide dataset used in the project, or that obtained from the local 

area in question (usually the MPO or Parish level) with the known crash frequencies, 

is used in trainset mode for the model to learn the base data conditions. 

3.) The model trainset values are calibrated and validated as necessary. 

4.) Using the same roadway data as collected in Step 1 but updated to the forecast year 

values (obtained from a travel demand model), the model is run in testset mode to 

determine the predicted crash frequencies per segment. 

5.) Step 4 is then repeated, but using forecast year values that reflect a transportation 

planning test project under consideration instead, once more determining the crash 

frequencies per segment. 

6.) The crash frequencies of Steps 4 and 5 are then compared for the given corridor of a 

test project and those nearby to determine the change in crash frequencies of the 

corridors and consequently if the test project makes the roadways safer or not.  

 

Of note is that in Steps 4 and 5 the data used in the model runs relies upon information that 

may not be in the base data. When a roadway is widened or newly built, there are unknowns 

in the design of new medians, lane widths, and other factors. Much of this data necessary for 

the crash prediction models developed in this study is already determined during the 

transportation planning process (number of lanes, ADT, segment length, divided/undivided). 

For data which is not normally determined in the planning process (average lane width, 

median presence, median width), the use of the LADOTD roadway design guidelines 

(Appendix B) is used for new roadways to determine this data, while widened roadways use 
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both the LADOTD roadway design guidelines and engineering judgement based on the 

roadway location. 

 

Step 6 as described above is what would allow for engineers and transportation planners to 

have a metric for the justification of ranking a project in an MTP update based upon the 

safety impacts it is projected to have. A decrease in the crashes along the analyzed corridors 

means that the project increases safety and therefore would receive a higher score in the 

transportation planning process as it helps to achieve one of the eight planning requirements 

of MAP-21. A case study in how the developed crash prediction models of this thesis is 

displayed in Appendix C.
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Chapter 5: Conclusion 

Urban transportation planning and metropolitan transportation plans are complex, regulated, 

and vitally important undertakings that impact the long range growth and health of an area. 

As such, the Federal government ensures that where possible the planning processes are 

adequately defined and the desired outcomes are well known. These outcomes have come 

even further to the fore with each new transportation bill, and MAP-21 has pushed 

transportation planning into an era of further numerical proof of the effects of the MTP 

documents that MPOs and consultants put out for a region. 

 

Historically the safety element scoring in these transportation planning documents has relied 

solely upon the judgment and knowledge of experienced professionals. While these 

professionals know how the safety of roadways is likely to change from the projects involved 

in an MTP due to their long-used experience, the advent of the performance measures 

demanded by MAP-21 means that developing numerical means of displaying the safety 

change has become ever more important. 

 

Few states have the means with which to show how safety changes on their roadways as the 

development of a program or model can be time-consuming and costly. This often means that 

planning level models are even more disadvantaged as most planning projects last only about 

a year to a year and a half. The development of a planning level crash prediction model, 

however, is now almost a must to meet the MAP-21 requirements.
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While the use of HSM modeling is available to transportation planning efforts, they are 

cumbersome and time consuming. The data involved in properly developing HSM models 

requires more time to obtain than is often practical for the timeframe of an MTP update and 

most of the data is not available at the planning level. The models developed in this project 

require less time and less data, as well as making use of data that already used at the planning 

level or easily obtainable. 

 

The models developed through the research in this project have shown that such models can 

be created using statewide crash data provided from an agency that maintains such 

information. Crash data from the LADOTD was used to create a database of crashes by 

roadway segment (using control section and logmile data) and its respective data for ADT, 

length, number of lanes, and other information. Using this database, six models were created 

for various roadway types and, using SVR modeling, a validated base model was created that 

emulated the trends of average crash frequencies on roadway segments for both rural and 

urban roadways. 

 

These models can be used in order to predict the future crash frequencies on roadways based 

upon their expected future conditions and the impacts that test projects for an MTP process 

will have upon these roadways. Using the predicted crash frequencies, the relative change 

between the two model runs for given segments will show the change in crashes, and 

therefore, safety, on a roadway. This will allow transportation planners to use mathematical 

data to rank and score transportation projects based on safety and satisfy the MAP-21 

requirements. 
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Appendix C: Sample Case Study of Model Application  

C.1 Introduction 

While the developed model of this thesis meets the steps necessary to be developed in the 

same manner as an MTP’s Travel Demand Model (TDM), an example of the application of 

the model provides proof of its viability to transportation planning. Following the 

development of a TDM, the study team for a planning project uses it to forecast future travel 

patterns. This is done for both the network without any additional projects, and for a network 

with additional projects. The congestion relief of the new projects is often used as part of 

ranking test projects via a quantitative mean. The application of this thesis’s models 

functions in the same way and two examples will be displayed. 

 

C.2 Background and Study Area 

This case study looks at the Lake Charles MTP 2040 that was recently conducted for the 

Imperial Calcasieu Regional Planning & Development Commission (IMCAL) by Neel-

Schaffer, Inc. (NSI). IMCAL selected NSI for the model development and transportation 

planning process. The TDM created by NSI was made available for this thesis as well as the 

crash data that was received from the LADOTD for the safety element. This data will be used 

to train the thesis models to the Lake Charles local crash trends. While the entirety of the 

study area chosen for the MTP (Figure C-1) could be used, only two corridors and their 

parallel routes (Figure C-2) are analyzed for this case study for the purposes of brevity. 

Figure C-3 shows whether a roadway segment was analyzed under the conditions of a new 

roadway test or a roadway widening test. 
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Figure C-1: Lake Charles MTP 2040 Study Area 

 

Source: IMCAL, NSI, TDM 

Figure C-2: Case Study Corridors 

 

Source: IMCAL, NSI, TDM 
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Figure C-3: Corridors by Test Project Type 

 

Source: IMCAL, NSI, TDM 

 

The new roadway project analyzes three corridors that are northwest of the city of Sulphur, 

and is based upon a test project that adds a new north-south route. This project is meant to 

ease travel on US 90 and W Houston River Rd between WPA Rd and Claiborne St, which 

are currently existing roadways. WPA Rd and the new roadway are in rural areas while 

Claiborne St is in a rural area.  

 

The widening project analyzes the impact upon Coleman St, Kirkman Rd, and Enterprise 

Blvd in Lake Charles based upon widening Kirkman Rd from two lanes to four lanes. All of 

the streets in the widening analysis are urban roadways. This means that four of the six 

models developed in the thesis will be tested under planning level conditions. 
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C.3 Model Data 

The TDM created by Neel-Schaffer provides much of the data necessary for the crash 

prediction models. The segments in the TDM contain the  

 Length (LENGTH) 

 Functional classification (used to develop the CLASS_DESC) 

 Model classification (used to develop the MED_PRESENCE) 

 Number of lanes (NUM_LANES) 

 Traffic volumes (AVG_ADT) 

In addition to the TDM data by segment, further data needed to be collected. While the HSM 

methodologies require a considerable amount of data at this stage (see Chapter 2), the 

developed crash prediction models for the thesis require considerably less data and were easy 

to obtain. The median widths (MEDIAN_WIDTH) and average lane widths 

(AVG_LANE_WIDTH) were gathered using GIS and an overlay of the test project segments 

with an aerial map.  

This data was gathered for the model base year, 2013; model horizon year, 2040; and model 

horizon year with the MTP test projects. Where necessary, such as for the information on the 

new roadways or a new median created on the widened roadway itself, the data in Appendix 

B was used to develop the median presence, median width, and average lane width data. 

Figure C-4 displays a screenshot of the data obtained in the collection process for the base 

year. This data was also gathered for the two different scenarios to be tested. 
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Figure C-4: Sample Segment Data 

 

Source: NSI, TDM 

C.4 Model Results 

The crash prediction models were used for the segments in their respective classes to obtain 

the predicted crash frequencies of each given scenario. Using the trainset methodology that 

was described in Chapter 3, the model learned the trends of the Lake Charles area using the 

provided base year data that was collected. While the statewide set that was developed in the 

thesis could have been used, the Lake Charles specific data was used to account for local 

influences upon driver behavior. 

After the model learned the trends of the crash data in trainset mode, the testset mode of the 

models was used for prediction purposes to estimate the crash frequencies in the horizon year 

without test projects (EC for the existing + committed network in the MTP), and with the test 

projects (MTP). Table C-1 displays the results of the crash forecasting at the segment level 

obtained from the model. Table C-2 displays the overall results by test type. 
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Table C-1: Comparison of EC and MTP Predicted Crashes 

TDM_ID EC_CRASHES MTP_CRASHES DIFFERENCE TEST 

1247 1.42 1.23 -0.19 Widening 

1264 1.58 1.65 0.06 Widening 

1265 1.71 1.40 -0.31 Widening 

1266 1.52 1.31 -0.21 Widening 

1267 3.43 3.99 0.56 Widening 

1269 1.58 1.71 0.12 Widening 

1274 0.75 0.86 0.11 Widening 

1275 0.73 0.88 0.15 Widening 

1284 0.07 2.44 2.37 Widening 

1285 1.40 1.21 -0.19 Widening 

1287 1.39 3.34 1.95 Widening 

1288 1.42 4.05 2.62 Widening 

1290 1.57 3.06 1.50 Widening 

1291 1.58 3.16 1.58 Widening 

1292 1.57 3.09 1.52 Widening 

1293 1.49 0.24 -1.25 Widening 

1294 1.36 2.77 1.41 Widening 

1300 1.54 3.10 1.56 Widening 

1301 1.57 3.15 1.58 Widening 

1302 1.44 3.34 1.90 Widening 

1303 0.99 8.15 7.16 Widening 

1313 2.56 15.32 12.76 Widening 

1319 1.67 1.34 -0.33 Widening 

1321 1.40 2.68 1.28 Widening 

1323 2.84 2.90 0.06 Widening 

1324 4.40 4.49 0.09 Widening 

1326 0.01 0.02 0.01 Widening 

1328 5.04 4.19 -0.85 Widening 

1329 2.62 2.69 0.07 Widening 

1331 4.87 3.70 -1.17 Widening 

1332 1.20 1.51 0.31 Widening 

1333 1.12 2.81 1.69 Widening 

1334 24.17 24.20 0.03 Widening 

1335 2.74 2.83 0.10 Widening 

1336 3.81 3.85 0.04 Widening 

1342 2.43 2.50 0.08 Widening 

1346 4.23 4.01 -0.22 Widening 

1584 0.98 9.77 8.79 Widening 

1914 0.19 2.79 2.60 Widening 

1962 0.19 8.89 8.70 Widening 

2018 2.72 2.52 -0.19 Widening 
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TDM_ID EC_CRASHES MTP_CRASHES DIFFERENCE TEST 

2019 1.18 5.60 4.42 Widening 

2076 0.72 3.08 2.35 Widening 

2078 1.39 2.85 1.46 Widening 

2083 0.32 6.54 6.22 Widening 

2084 2.24 2.24 0.00 Widening 

2093 1.60 3.19 1.58 Widening 

2095 1.46 3.27 1.81 Widening 

2096 1.38 1.08 -0.30 Widening 

2104 0.34 4.25 3.91 Widening 

2105 1.56 3.10 1.54 Widening 

2106 2.97 2.89 -0.07 Widening 

2114 1.51 2.92 1.40 Widening 

2115 3.04 2.94 -0.10 Widening 

2127 1.50 1.42 -0.08 Widening 

2136 1.27 3.41 2.14 Widening 

2137 1.63 1.74 0.11 Widening 

2147 1.95 1.86 -0.09 Widening 

2148 1.61 4.09 2.48 Widening 

2149 4.45 3.38 -1.08 Widening 

2150 3.18 4.04 0.86 Widening 

2157 3.10 3.01 -0.10 Widening 

2327 1.04 0.78 -0.26 Widening 

2368 3.39 3.44 0.05 Widening 

2385 4.15 4.16 0.01 Widening 

2386 3.90 3.90 0.00 Widening 

2387 3.62 14.62 11.00 Widening 

2708 1.53 3.10 1.57 Widening 

2733 1.54 0.13 -1.41 Widening 

2735 1.45 1.20 -0.25 Widening 

2737 4.06 4.08 0.03 Widening 

2806 3.01 3.14 0.13 Widening 

2811 1.54 2.98 1.44 Widening 

2816 1.01 0.76 -0.25 Widening 

2819 1.70 1.40 -0.31 Widening 

2823 2.97 2.89 -0.08 Widening 

2835 1.53 2.93 1.40 Widening 

2840 4.35 4.26 -0.09 Widening 

2851 4.09 4.13 0.04 Widening 

3157 2.95 2.90 -0.05 Widening 

3162 3.24 2.51 -0.72 Widening 

3179 1.56 3.18 1.62 Widening 

3198 1.63 1.50 -0.13 Widening 

3342 1.27 1.36 0.09 Widening 

3344 1.42 4.73 3.31 Widening 
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TDM_ID EC_CRASHES MTP_CRASHES DIFFERENCE TEST 

3346 1.31 4.71 3.39 Widening 

3348 1.42 4.29 2.87 Widening 

3350 4.32 3.28 -1.04 Widening 

3356 1.32 5.37 4.05 Widening 

5199 2.16 2.05 -0.10 Widening 

5201 3.09 4.14 1.04 Widening 

5215 3.08 2.51 -0.57 Widening 

5219 3.01 2.41 -0.60 Widening 

5228 1.16 3.55 2.40 Widening 

5235 5.03 4.49 -0.54 Widening 

5271 1.56 3.15 1.59 Widening 

5274 1.48 1.31 -0.17 Widening 

5325 1.57 1.15 -0.42 Widening 

5416 0.87 0.75 -0.12 New Road 

5417 0.85 0.77 -0.09 New Road 

5418 1.06 0.82 -0.23 New Road 

5419 0.00 2.51 2.51 New Road 

5420 0.00 0.85 0.85 New Road 

5421 1.67 1.50 -0.17 New Road 

5422 1.52 1.39 -0.12 New Road 

5423 1.78 1.45 -0.34 New Road 

5424 3.25 1.75 -1.50 New Road 

5425 3.12 1.74 -1.38 New Road 

 

Table C-2: Case Study Model Results 

  EC_CRASHES MTP_CRASHES CHANGE % CHANGE 

Widening Test 225.20 340.55 115.35 51.22% 

New Road Test 14.12 13.53 -0.60 -4.22% 

 

As shown in Table C-2, the widening of a roadway increases the amount of crashes that 

occurs on the affected corridors, with an overall change of about 51 percent. The majority of 

these increased crashes are on the widened roadway as expected due to the higher ADT that 

the road now experiences, as well as newly introduced driver behaviors such as weaving. The 

new roadway actually reduces the amount of crashes per year for the analyzed segments by 
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about four percent. Figure C-5 displays the overall change that each roadway segments 

experiences. 

Figure C-5: Crash Frequency Changes of Tested Segments 

 

Source: TDM, Thesis Crash Prediction Model 

Based upon the results in Table C-2 and Figure C-5, the models are predicting in a 

reasonable manner and provide engineers and transportation planners with a quantitative 

means to rank these two test projects. 

   

The new roadway “shifts” traffic crashes away from the existing roadways and onto the new 

roadway, but providing a safety benefit by reducing the overall crashes between the 

corridors. Both roadways that parallel the new roadway experience decreased crash 

frequencies upon all segments. This decreased crash frequency for the affected corridors 
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means that the project would receive a higher safety ranking in the MTP project selection 

process. 

 

The widening of Kirkman St. increases the crash frequencies due to the widened road’s 

increased capacity and the amount of traffic it draws from other parts of the network. Almost 

the entirety of Kirkman Rd. experiences increased crash frequencies. This is expected due to 

its higher capacity, increased ADT, and different driver behaviors introduced from the 

increased lanes.  

 

While the roads that parallel Kirkman St. do experience some segments with increased 

crashes, these are likely due to a realignment of travel patterns from the congestion relief 

offered by the widened roadway and are not indicative of model failure. Many segments 

experience reduced crash frequencies as a result of these changed roadway patterns as well. 

Further analysis shows that the crashes would increase on Coleman St. by six crashes per 

year while Enterprise Blvd would stay relatively unchanged, meaning that most of the 

increase crash frequency is upon Kirkman St., the widened roadway, itself. However, due to 

the overall change that the project creates, a 51 percent increase in crashes per year, the 

project would receive a lower safety ranking in the MTP selection process due to the 

increased risk it creates for the general public and users of the roadway. 
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C.5 Conclusion 

This case study of the developed thesis crash prediction models shows that the model can be 

run at the transportation planning level with available data and obtain reasonable results. The 

created TDMs of the MTP process provide data that is easy to use and readily accessible. 

Obtaining the other necessary data is also quickly done and the results of the thesis models 

can be quickly obtained and interpreted. Using the model results, analysis showed that a new 

roadway results in reduced crashes while the widened roadways change in travel patterns 

resulted in a large increase of crashes. This results in one process that would have a higher 

safety score for project ranking and one with a lower safety score, respectively. Using the 

mathematical results obtained from these model runs and observing the difference for 

individual roadways and overall corridors will provide a quick, efficient, and quantitative 

means for meeting the necessary MAP-21 requirements.



www.manaraa.com

 

 

 

Broussard, Nicholas P.  Bachelor of Science, University of Louisiana at Lafayette, Fall 2009; 

Master of Science, University of Louisiana at Lafayette, Fall 2015 

Major:  Engineering, Civil Engineering option 

Title of Thesis:  Development of Crash Prediction Models for Transportation Planning 

Analysis 

Thesis Director:  Dr. Xiaoduan Sun 

Pages in Thesis:  83; Words in Abstract:  239 

 

ABSTRACT 

Transportation planning is a vital and necessary operation for a metropolitan area to grow. As 

such, and in order to receive Federal funding for transportation projects, metropolitan areas 

engage in transportation planning as regulated by MAP-21. One element of meeting MAP-21 

requirements is addressing the safety of a region. With new requirements by MAP-21, MPOs 

must demonstrate some sort of performance measure showing changes in the various 

elements, making quantitative means of displaying these changes ever more important.  

 

The goal of this project was to develop a model or set of models that could produce 

quantitative results as opposed to the traditional qualitative results gained from professional 

opinion. This allows for better decision-making for test project scoring in transportation 

plans and additionally in meeting MAP-21 requirements. Following a review of the current 

available methodologies and an inventory of other states’ efforts to develop crash prediction 

models, mathematical modeling for Louisiana statewide crash prediction formulae were 

attempted. These results and the methodology were deemed unsuitable for the desired 

outcomes and the use of SVR modeling was explored.
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The use of the SVR models described in this report produce acceptable results, have been 

validated for use in forecasting, and allow for the comparison of conditions between base 

data, future years, and future years with MTP test projects included. The results of these 

models provide transportation planners increased means to determine project rankings based 

on safety as well as satisfy MAP-21 requirements. 
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